[集合源码]——ConcurrentHashMap源码分析

云惠网小编 2022年1月15日03:18:11
评论
14226字阅读47分25秒
摘要

通过图解,以及深入源码学习,用简单易懂的话让你学习ConcurrentHashMap原理,让你不再畏惧源码

广告也精彩

结果再与 this.segmentMask 做位于运算,最终得到 1010 即下标为 10 的 segment

  • ⚠️线程不安全的HashMap

    HashMap在并发执行put操作时会引起死循环,是因为多线程会导致HashMap的Entry链表 形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获 取Entry。

    hashmap形成死链⛓️⛓️的主要原因是在扩容是将元素加入链表头导致的,而在JDK 8 虽然将扩容算法做了调整,不再将元素加入链表头(而是保持与扩容前一样的顺序),但仍不意味着能 够在多线程环境下能够安全扩容,还会出现其它问题(如扩容丢数据)

可以看到实现了懒惰初始化,在构造方法中仅仅计算了 table 的大小,以后在第一次使用时才会真正创建

rehash 流程,发生在 put 中,因为此时已经获得了锁,因此 rehash 时不需要考虑线程安全

### 🚦重要属性和内部类

笔记整理自 黑马程序员全面深入学习Java并发编程,从《Java并发编程的艺术》作为补充

img

🖥️JDK7中源码分析

其中 this.segmentShift 和 this.segmentMask 的作用是决定将 key 的 hash 结果匹配到哪个 segment

👨‍🏫分析:

在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈 值,则对数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap 是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容 之后没有新元素插入,这时HashMap就进行了一次无效的扩容

Java 8 数组(Node) +( 链表 Node | 红黑树 TreeNode ) 以下数组简称(table),链表简称(bin)

它维护了一个 segment 数组,每个 segment 对应一把锁

🧮size 计算流程

⏳put 流程

👨‍🏫分析1:

segments数组的长度ssize是通过concurrencyLevel计算得出的。为了能通过按位与的散列算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方(power-of-two size),所以必须计算出一个大于或等于concurrencyLevel的最小的2的N次方值来作为segments数组的长度。假如concurrencyLevel等于14、15或16,ssize都会等于16,即容器里锁的个数也是16。

public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// spread 方法能确保返回结果是正数
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 如果头结点已经是要查找的 key
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// hash 为负数表示该 bin 在扩容中 或是 treebin, 这时调用 find 方法来查找
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 正常遍历链表, 用 equals 比较
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}

ConcurrentHashMap 结合了 HashMap 和 HashTable 二者的优势💪。HashMap 没有考虑同步,HashTable 考虑了同步的问题。但是 HashTable 在每次同步执行时都要锁住整个结构。ConcurrentHashMap 锁的方式是稍微细粒度的。

🔗参考链接:

size 计算实际发生在 put,remove 改变集合元素的操作之中

image-20220113174935060

private void rehash(HashEntry<K,V> node) {
HashEntry<K,V>[] oldTable = table;
int oldCapacity = oldTable.length;
int newCapacity = oldCapacity << 1;
threshold = (int)(newCapacity * loadFactor);
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
int sizeMask = newCapacity - 1;
for (int i = 0; i < oldCapacity ; i++) {
HashEntry<K,V> e = oldTable[i];
if (e != null) {
HashEntry<K,V> next = e.next;
int idx = e.hash & sizeMask;
if (next == null) // Single node on list
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot
HashEntry<K,V> lastRun = e;
int lastIdx = idx;
// 过一遍链表, 尽可能把 rehash 后 idx 不变的节点重用
for (HashEntry<K,V> last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
newTable[lastIdx] = lastRun;
// 剩余节点需要新建
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
}
}
}
// 扩容完成, 才加入新的节点
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
// 替换为新的 HashEntry table
table = newTable;
}
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
// 尝试加锁
HashEntry<K,V> node = tryLock() ? null :
// 如果不成功, 进入 scanAndLockForPut 流程
// 如果是多核 cpu 最多 tryLock 64 次, 进入 lock 流程
// 在尝试期间, 还可以顺便看该节点在链表中有没有, 如果没有顺便创建出来
scanAndLockForPut(key, hash, value);
// 执行到这里 segment 已经被成功加锁, 可以安全执行
V oldValue;
try {
HashEntry<K,V>[] tab = table;
//定位插入位置
int index = (tab.length - 1) & hash;
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
// 更新
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
// 新增
// 1) 之前等待锁时, node 已经被创建, next 指向链表头
if (node != null)
node.setNext(first);
else
// 2) 创建新 node
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
// 3) 扩容
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
// 将 node 作为链表头
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}

🎬原理解析

⏳get流程

⚙️构造器分析

👨‍🏫分析:

在扩容的时候,首先会创建一个容量是原来容量两倍的数组,然后将原数组里的元素进 行再散列后插入到新的数组里。为了高效,ConcurrentHashMap不会对整个容器进行扩容,而只 对某个segment进行扩容

https://zhuanlan.zhihu.com/p/113436107#:~:text=%E5%9C%A8Concurr,%E7%A1%AC%E4%BB%B6%E7%9A%84%E5%AE%89%E5%85%A8%E6%9C%BA%E5%88%B6%E3%80%82

// 默认为 0
// 当初始化时, 为 -1
// 当扩容时, 为 -(1 + 扩容线程数)
// 当初始化或扩容完成后,为 下一次的扩容的阈值大小
private transient volatile int sizeCtl;
// 整个 ConcurrentHashMap 就是一个 Node[]
static class Node<K,V> implements Map.Entry<K,V> {}
// hash 表
transient volatile Node<K,V>[] table;
// 扩容时的 新 hash 表
private transient volatile Node<K,V>[] nextTable;
// 扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点
static final class ForwardingNode<K,V> extends Node<K,V> {}
// 用在 compute 以及 computeIfAbsent 时, 用来占位, 计算完成后替换为普通 Node
static final class ReservationNode<K,V> extends Node<K,V> {}
// 作为 treebin 的头节点, 存储 root 和 first
static final class TreeBin<K,V> extends Node<K,V> {}
// 作为 treebin 的节点, 存储 parent, left, right
static final class TreeNode<K,V> extends Node<K,V> {}

### ⏳put流程

  • 如果没有初始化就先调用initTable()方法来进行初始化过程
  • 如果没有hash冲突就直接CAS插入
  • 如果还在进行扩容操作就先进行扩容
  • 如果存在hash冲突,就加锁来保证线程安全,这里有两种情况,一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入
  • 最后一个如果该链表的数量大于阈值8,就要先转换成黑红树的结构,break再一次进入循环
  • 如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
// tableSizeFor 仍然是保证计算的大小是 2^n, 即 16,32,64 ... 
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
int h = hash(key);
//============= 分析 ===============> 
// u 为 segment 对象在数组中的偏移量
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
// s 即为 segment
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}

例如,根据某一 hash 值求 segment 位置,先将高位向低位移动 this.segmentShift 位

  • JDK1.8

    💡在JDK1.8 中,放弃了 Segment 臃肿的设计,取而代之的是采用 Node + CAS + Synchronized 来保证并发安全,synchronized 只锁定当前链表或红黑二叉树的首节点,这样只要 hash 不冲突,就不会产生并发,效率又提升 N 倍。

    结构如下:

以下源码分析为Jdk7的ConcurrentHashMap

💻JDK8中源码分析

以上就是一种散列算法,目的是减少散列冲突,使元素能够均匀地分布在不同的Segment上, 从而提高容器的存取效率。

image-20220113174846155

  • 计算元素个数前,先不加锁计算两次,如果前后两次结果如一样,认为个数正确返回

  • 如果不一样,进行重试,重试次数超过 3,将所有 segment 锁住,重新计算个数返回

    ConcurrentHashMap是如何判断在统计的时候容器是否发生了变化呢?

    使用modCount 变量,在put、remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size 前后比较modCount是否发生变化,从而得知容器的大小是否发生变化

🚥重要方法

  • JDK1.7

    首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。

    在 JDK1.7 中,ConcurrentHashMap 采用 Segment + HashEntry 的数据结构,结构如下:

    一个 ConcurrentHashMap 里包含一个 Segment 数组。Segment 的结构和 HashMap 类似,是一种数组和链表结构,segment 继承了 ReentrantLock,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素。当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 的锁。

👩‍🏫整体分析

  • 没有竞争发生,向 baseCount 累加计数

  • 有竞争发生,新建 counterCells,向其中的一个 cell 累加计数

    • counterCells 初始有两个 cell
    • 如果计数竞争比较激烈,会创建新的 cell 来累加计数
    public int size() {
    long n = sumCount();
    return ((n < 0L) ? 0 :
    (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
    (int)n);
    }
    final long sumCount() {
    CounterCell[] as = counterCells; CounterCell a;
    // 将 baseCount 计数与所有 cell 计数累加
    long sum = baseCount;
    if (as != null) {
    for (int i = 0; i < as.length; ++i) {
    if ((a = as[i]) != null)
    sum += a.value;
    }
    }
    return sum;
    }
    
  1. 该类包含两个静态内部类 HashEntry 和 Segment ;前者用来封装映射表的键值对,后者用来充当锁的角色;

  2. Segment 是一种可重入的锁 ReentrantLock,每个 Segment 守护一个 HashEntry 数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 锁。

可以看到 ConcurrentHashMap 没有实现懒惰初始化,空间占用不友好

⏳get流程

img

扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点

image-20220113205051861

public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
// 计算出 segment 下标
int j = (hash >>> segmentShift) & segmentMask;
// 获得 segment 对象, 判断是否为 null, 是则创建该 segment
if ((s = (Segment<K,V>)UNSAFE.getObject
(segments, (j << SSHIFT) + SBASE)) == null) {
// 这时不能确定是否真的为 null, 因为其它线程也发现该 segment 为 null,
// 因此在 ensureSegment 里用 cas 方式保证该 segment 安全性
s = ensureSegment(j);
}
// 进入 segment 的put 流程
return s.put(key, hash, value, false);
}

📌put操作过程如下:

public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry
try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
// 超过重试次数, 需要创建所有 segment 并加锁
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
//使用modCount变量,在put、remove和clean方法里操作元素前都会将变量modCount进行加1,
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}

分析:

定位HashEntry和定位Segment的散列算法虽然一样, 都与数组的长度减去1再相“与”,但是相“与”的值不一样,定位Segment使用的是元素的 hashcode通过再散列后得到的值的高位,而定位HashEntry直接使用的是再散列后的值。其目的 是避免两次散列后的值一样,虽然元素在Segment里散列开了,但是却没有在HashEntry里散列 开。

public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
//============= 分析 ===============> 
//segments数组的长度ssize是通过concurrencyLevel计算得出的。
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// ssize 必须是 2^n, 即 2, 4, 8, 16 ... 表示了 segments 数组的大小
int sshift = 0;
int ssize = 1;
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
//================================> 
//1、segmentShift用于定位参与散列运算的位数
// segmentShift 默认是 32 - 4 = 28
this.segmentShift = 32 - sshift;
//2、segmentMask是散列运算的掩码
// segmentMask 默认是 15 即 0000 0000 0000 1111
this.segmentMask = ssize - 1;
//通过initialCapacity和loadFactor来初始话容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
//cap就是segment里HashEntry数组的长度
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
// 创建 segments and segments[0]
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}
  • 🦥效率低下的HashTable

    HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable 的效率非常低下。因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同 步方法时,会进入阻塞或轮询状态。

    img

  • ⏩ConcurrentHashMap的锁分段技术可有效提升并发访问率

    HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的 线程都必须竞争同一把锁

    假如容器里有多把锁🔐🔐🔐,每一把锁用于锁容器其中一部分数据,那么 当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并 发访问效率,这就是ConcurrentHashMap所使用的锁分段技术。

    首先将数据分成一段一段地存 储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数 据也能被其他线程访问。

    JDK1.7 的 ConcurrentHashMap:

    img

文章目录

    • 🔍为什么要使用ConcurrentHashMap
    • 🎬原理解析
    • 🖥️JDK7中源码分析
      • ⚙️构造器分析
      • ⏳put 流程
      • ⏳get流程
      • 🧮size 计算流程
    • 💻JDK8中源码分析
      • 🚥重要方法
      • ⚙️构造器分析
      • ⏳get流程
      • 🧮size 计算流程
      • 👩‍🏫整体分析

以下源码分析为Jdk8的ConcurrentHashMap

  • 优点:如果多个线程访问不同的 segment,实际是没有冲突的,这与 jdk8 中是类似的

  • 缺点:Segments 数组默认大小为16,这个容量初始化指定后就不能改变了,并且不是懒惰初始化

构造完成,如下图所示

// 获取 Node[] 中第 i 个 Node
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i)
// cas 修改 Node[] 中第 i 个 Node 的值, c 为旧值, v 为新值
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)
// 直接修改 Node[] 中第 i 个 Node 的值, v 为新值
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)

⚙️构造器分析

  • 初始化,使用 cas 来保证并发安全,懒惰初始化 table
  • 树化,当 table.length < 64 时,先尝试扩容,超过 64 时,并且 bin.length > 8 时,会将链表树化,树化过程 会用 synchronized 锁住链表头
  • put,如果该 bin 尚未创建,只需要使用 cas 创建 bin;如果已经有了,锁住链表头进行后续 put 操作,元素 添加至 bin 的尾部
  • get,无锁操作仅需要保证可见性,扩容过程中 get 操作拿到的是 ForwardingNode 它会让 get 操作在新 table 进行搜索
  • 扩容,扩容时以 bin 为单位进行,需要对 bin 进行 synchronized,但这时妙的是其它竞争线程也不是无事可 做,它们会帮助把其它 bin 进行扩容,扩容时平均只有 1/6 的节点会把复制到新 table 中
  • size,元素个数保存在 baseCount 中,并发时的个数变动保存在 CounterCell[] 当中。最后统计数量时累加 即可

segment 继承了可重入锁(ReentrantLock),它的 put 方法为

public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
// 其中 spread 方法会综合高位低位, 具有更好的 hash 性
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
// f 是链表头节点
// fh 是链表头结点的 hash
// i 是链表在 table 中的下标
Node<K,V> f; int n, i, fh;
// 要创建 table
if (tab == null || (n = tab.length) == 0)
// 初始化 table 使用了 cas, 无需 synchronized 创建成功, 进入下一轮循环
tab = initTable();
// 要创建链表头节点
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 添加链表头使用了 cas, 无需 synchronized
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break;
}
// 帮忙扩容
else if ((fh = f.hash) == MOVED)
// 帮忙之后, 进入下一轮循环
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 锁住链表头节点
synchronized (f) {
// 再次确认链表头节点没有被移动
if (tabAt(tab, i) == f) {
// 链表
if (fh >= 0) {
binCount = 1;
// 遍历链表
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 找到相同的 key
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
// 更新
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
// 已经是最后的节点了, 新增 Node, 追加至链表尾
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
// putTreeVal 会看 key 是否已经在树中, 是, 则返回对应的 TreeNode
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
// 释放链表头节点的锁
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
// 如果链表长度 >= 树化阈值(8), 进行链表转为红黑树
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// 增加 size 计数
addCount(1L, binCount);
return null;
}
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield();
// 尝试将 sizeCtl 设置为 -1(表示初始化 table)
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 获得锁, 创建 table, 这时其它线程会在 while() 循环中 yield 直至 table 创建
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
// check 是之前 binCount 的个数
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
if (
// 已经有了 counterCells, 向 cell 累加
(as = counterCells) != null ||
// 还没有, 向 baseCount 累加
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)
) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (
// 还没有 counterCells
as == null || (m = as.length - 1) < 0 ||
// 还没有 cell
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
// cell cas 增加计数失败
!(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
) {
// 创建累加单元数组和cell, 累加重试
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
// 获取元素个数
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// newtable 已经创建了,帮忙扩容
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 需要扩容,这时 newtable 未创建
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}

🔓get 时并未加锁,用了 UNSAFE 方法保证了可见性,通过直接操作内存的方式来保证并发处理的安全性,使用的是硬件的安全机制。扩容过程中,get 先发生就从旧表取内容,get 后发生就从新 表取内容。

https://mp.weixin.qq.com/s/nEvxXGXLlWzCqSGngSUd1w

🔍为什么要使用ConcurrentHashMap

image-20220112230205908

🧮size 计算流程

以下数组简称(table),链表简称(bin)

image-20220113174916265

本文转自 https://blog.csdn.net/weixin_65349299/article/details/122482754

腾讯云618
未分类
云惠网小编
SpringCloud -- Config、Bus解析

SpringCloud — Config、Bus解析

1、Config1.1、概述简介1. 分布式面临的问题微服务意味着要将单体应用中的业务拆分成一个个子服务,每个服务的粒度相对较小,因此系统中会出现大量的服务。由于每个服务都需要必要...
Java数据结构-了解复杂度

Java数据结构-了解复杂度

2.实例分析与计算  四.写在最后  // 计算斐波那契递归fibonacci的时间复杂度 int fibonacci(int N) { return N < 2 ? N : fibonacci...
[深度解剖C语言] --关键字 static

[深度解剖C语言] –关键字 static

static ---最名不副实的关键字目录1.static修饰全局变量2.static修饰函数3.static修饰局部变量static的作用:1.static修饰全局变量我们创建两...
Java数据结构-认识顺序表

Java数据结构-认识顺序表

目录二.顺序表1.概念及结构2.顺序表的实现打印顺序表获取顺序表的有效长度在pos位置新增元素判断是否包含某个元素查找某个元素对应的位置获取/查找pos位置的元素给pos位置的元素...
腾讯云618

发表评论